SYNTHESIS OF $(+)$ S-^{α}-PERFLUOROETHYL- α -HYDROXYPHENYL ACETIC ACID AND HIGHLY EFFECTIVE

AUXILIARIES FOR USE IN ASYMMETRIC INDUCTIGN

A. SOLLADIE-CAVALLO* and J. SUFFERT

Laboratoire de Stéréochimie (ERA du CNRS nº 687) Université Louis Pasteur, B.P. 296/R8, F 67008 STRASBOURG-France

summary : *OpticaZly pure arene-chromiwn-tricarbonyl alcohols 2 and 3 (readily available in both enantiomeric forms) which are powerfu2 inducers of chiraíity in Prelog-type synthesis are presented. 88% optically pure (+/S-a-pepfluoroethyl- a-hydroxyphenylacetic acid is synthesizedfor the first time* in 3 *steps and 73% yietd.*

Highly enantioselective formation of C-C bonds is of great importance in organic synthesis, but still more important is to be able to synthesize the right enantiomer. We present here two *new* alcohols, 2, 2, which are readily available in two enantiomeric forms from the chiral complexed aldehyde 1 and are efficient inducers of chirality on Prelog-type synthesis.

Addition of perfluoroethyl lithium on the complexed aldehyde $\underline{1}$ affords alcohols 2 with 88% of diastereomeric excess (1); ethyl-magnesium bromide affords 3 with 100% d.e. . Hence, the (+) 1S and/or (-) 1R complexed aldehydes 1 which are easily obtained by resolution (2), afford either alcohol 2 (+)lSS (3) and alcohol 3 (+)lSS (3,4) or the enantiomers $2 (-)$ IRR and $3 (-)$ IRR as desired, scheme 1.

The usefulness of these chiral alcohols 2 and 3 is tested first in the Prelog asymmetric synthesis. α -Keto-esters 4, 5, 6 and 7, Table 1, have been studied.

The obtained diastereomer mixtures are analyzed by 1 H NMR and, when possible, by 19 F NMR and it appears that, in all cases, the extent of asymmetric induction is very high : 84% d.e. to almost 100% d.e. $(\frac{1}{2}, 3)$.

Addition of methyl-Grignard on optically pure keto-ester 6 obtained from (+)lSS optically pure alcohol 3, followed by saponification gives $(+)$ S atrolactic acid 8 $(|\alpha|_D^{20}$ =+30.6° \pm 0.3°, c=1.1, EtOH, 82% ee (5)). It may thus be noted that, even with such a complexed alcohol as chiral residue, the Prelog model (7) holds and addition occurs from the rear-side as drawn on scheme 2 (R = C_2H_5 , R₁ = Ph, R₂ = CH₃). Asymmetric addition of C_2F_5 Li on chiral α -keto-esters is tested here for the first time. (+) α -Perfluoroethyla-hydroxy phenylacetic acid 9 (8) is thus obtained in high optical purity (88% ee) from keto-ester 6 in two steps and it can be predicted that the absolute configuration is S (9).

After saponification, the optically pure complexed alcohol $(2 \text{ or } 3)$ is recovered in 95% yield in al1 cases and may thus be converted again into keto-ester and used for another addition reaction as shown on scheme 2.

These two new chiral alcohols appear as efficient as (-)-8-phenylmenthol during Prelog asymmetric synthesis (10.11) and are now tested on other kinds of reactions.

Acknowledgments. We thank PCUK-France for financia1 *support and for providing pentafluoroethyl iodide.*

References

- (1) A. SOLLADIE-CAVALLO and J. SUFFERT, unpublished results.
- (2) A. SOLLADIE-CAVALLO, G. SOLLADIE and E. TSAMO, J. Org. Chem. <u>44</u>, 4189 (1979)
- (3) Predominant diastereomer of alcohol <u>2</u> : yellow solid; m.p. = 94°-96°, $\rm c_{13}^{}H_9^{}F_5^{}O_4^{}Cr$ C% calc. 41.51 Tr. 41.63, H%, Calc. 2.41 Tr. 2.42; IR(CHC13) 3600 w, 3310 w, 1980 VS, 1905 vvs cm-l; H NMR(CDC1₃, %/TMS, WP 200 Bruker) 2.24(3H, s) 2.46(1H, OH, d.d. $^{3}J_{\text{HH}}$ = 4,5 Hz, $^{3}J_{\text{HF}}$ = 2Hz) 5.15(1H, d.d.d. $^{3}J_{\text{HF}}$ = 19Hz, $^{3}J_{\text{HF}}$ = 3Hz, $^{3}J_{\text{HH}}$ = 4.5 Hz) 5.23(1H, compl. arom. d, $3_{J_{HH}}$ = 6.5Hz) 5.27(1H, compl. arom., t, $3_{J_{HH}}$ = 6.5Hz) 5.55(1H, compl. arom.,t, $\frac{3}{3}J_{\rm{HH}}$ = 6.5Hz) 5.86(1H, compl. arom., d, $\frac{3}{3}J_{\rm{HH}}$ = 6.5Hz). $\frac{19}{\rm{F. NMR}}$ (CDCl₃, C° CFC1₃, WH 90 Bruker) -81.95(CF₃, S) -119.13 and -131.6 (CF₂, AB system, $\Delta v_{\text{sub}} = 1050$ Hz, σ_{AB} = 279 Hz). $|\sigma|_{D}$ Max. = + 53.2° (C 0.65, CHCl₃). Only one diastereomer in the case of alcohol <u>3</u> : very viscous yellow oil, IR(CHCl₃) 3600 w, 3380 w, 1970 vs, 1895 vs cm^{-1} ; ¹H.NMR(CDCl₃, ⁶/TMS, WP 200 Bruker) 1.02(CH₃, t) 1.65(CH₂, \overline{ABX}_2 , m) 1.96(OH.d) 2.15 (CH₃,s) 4.56(CH, m) 5.13(1H arom. compl.,d) 5.24(1H arom. compl.,t) 5.36(1H arom. compl., t) 5.75(1H arom. compl., d) $|a|_D^{200}$ Max. = +36° (C 0.6, CHCl₃) D
- (4) E. TSAMO, thèse d'Etat, Strasbourg, 1979
- (5) (+)S atrolactic acid, IR(CHCl₃) 3500, 3000, 1710 cm⁻¹; ¹H-NMR(CDCl₃, ⁶/TMS) 1.80(3H,S) 5.75(2H, b, OH and COOH)7.32(3H, arom. m) 7.56(2H, arom. m); $|{\alpha}|^{{20}^{-}}_{\rm D}$ \sum_{D} Max = + 37.7° (c 3.5, $EtOH$) (6).
- (6) "Tables of Resolving Agents and Optical Resolutions". S.H. WILEN, Edited by E.L. ELIEL, University of Notre Dame Press, Notre Dame, London, 1972.
- (7) "Asymmetric Organic Reactions" J.D. MORRISON and H.S. MOSHER Prentice-Hall Inc. 1971
- (9) d-Perfluoroethyl- d-hydroxyphenylacetic acid (+)S; mp = 93°-94°, IR(CHCl₃) 3460, 3000, 1720 cm⁻¹; $\left[\alpha\right]_0^{20}$ Max.=+5.3° \pm 0.3°(C 0.9, EtOH) calculated according to the 88% d.e. measured by NMR (Table 1)
- (9) (+) u-Trifluoromethyl- a-hydroxy phenyl acetic acid as been shown to be S ; L. HUB and H.S. MOSHER, J. Org. Chem. 35, 3691, 1970.
- (10) J.K. WHITESELL, A. BHATTACHARYA and K. HENKE, J.C.S. Chem. Comm. (1982) 988 and included references
- (111 J.K. WHITESELL, D. DEY0 and A. BHATTACHARYA, J.C.S. Chem. Comm. (1983) 802 and included references.

(Received in France 23 February 1984)